Learning Theory of Classification with Deep Neural Networks

Saturday, June 21th, 2025


Time:   16:25 a.m. — 17:05 a.m.
Location: 武汉大学-雷军楼一楼报告厅 

Learning Theory of Classification with Deep Neural Networks
Lei Shi
Fudan University
Title: Learning Theory of Classification with Deep Neural Networks
Abstract: Deep neural networks have achieved remarkable success in various binary classification tasks. Despite their practical effectiveness, theoretical understanding of their generalization in binary classification remains limited. In this talk, I will present our recent progress on classification using deep neural networks.
CV: 石磊,复旦大学数学科学学院教授,博士生导师。研究方向为学习理论和逼近论,主要研究机器学习算法的逼近,泛化和优化理论。相关成果发表于Applied and Computational Harmonic Analysis、Foundations of Computational Mathematics、Inverse Problems、Annals of Statistics、Mathematical Programming、SIAM Journal on Optimization以及Journal of Machine Learning Research等应用数学,统计,优化以及机器学习领域的国际权威期刊。主持上海市基础研究重点项目以及国自然面上项目,参与国自然重点项目以及中港联合基金项目,入选上海市优秀学科带头人计划。